Une expérience dont le principe a été proposé en 1978 par le grand physicien John Wheeler a été réalisée une nouvelle fois mais, cette fois-ci, en utilisant des satellites réfléchissant des faisceaux laser. Cette expérience rend perplexe les physiciens car, selon certaines interprétations, elle pourrait indiquer que, d'une certaine façon, le futur peut parfois influencer le passé...
L'expérience du choix retardé de Wheeler est une célèbre expérience de physique quantique dont les implications sont profondes mais toujours incertaines. Elle pourrait signifier que le passé pourrait dépendre de façon subtile du futur, mais rien n'est établi à ce sujet.
Un nouvel avatar de cette expérience a été réalisé en utilisant des satellites dans l'espace, sur lesquels des photons issus d'un laser ont rebondi. La distance qu'ils ont parcourue dans l'expérience est de l'ordre de 3.500 km et pourtant, les résultats obtenus sont toujours conformes aux prédictions de la mécanique quantique.
Il y a dix ans, Futura-Sciences avait consacré un article à une brillante expérience d'optique quantique réalisée par le physicien Jean-François Roch et ses collègues de l'ENS Cachan, parmi lesquels on trouvait Philippe Grangier et Alain Aspect. Le chercheur avait fait quelques commentaires sur cette expérience dans notre forum. Il s'agissait d'examiner de plus près une expérience de pensée proposée en 1978 par un des plus grands physiciens du XXe siècle : John Wheeler. Élève de Bohr et collègue d'Einstein, celui-ci a été le directeur de thèse de deux prix Nobel de physique, Richard Feynman et Kip Thorne ; il est l'un des pionniers de la physique des trous noirs et de la cosmologie quantique.
Nous avions décrit l'expérience (voir article ci-dessous). Depuis, celle-ci est passée du stade de la spéculation à celui de la réalisation à plusieurs reprises. On ne sait pas encore très bien ce qu'elle implique vraiment sur des relations causales possibles, mais bien mystérieuses, entre le futur et le passé, ce qui incite donc à une grande prudence quant aux conclusions qui peuvent en être tirées à cet égard.
L'expérience de choix retardé de Wheeler
Cette fameuse expérience, dite « de choix retardé de Wheeler », a toujours donné des résultats conformes aux prédictions de la mécanique quantique et ne permet pas non plus de remettre en cause la fameuse interprétation dite « de Copenhague » de ces équations. Il est toujours possible, cependant, d'interpréter les résultats de cette expérience dans le cadre de la théorie de David Bohm ou de celle des mondes multiples d’Everett.
L'expérience de choix retardé de Wheeler
Cette fameuse expérience, dite « de choix retardé de Wheeler », a toujours donné des résultats conformes aux prédictions de la mécanique quantique et ne permet pas non plus de remettre en cause la fameuse interprétation dite « de Copenhague » de ces équations. Il est toujours possible, cependant, d'interpréter les résultats de cette expérience dans le cadre de la théorie de David Bohm ou de celle des mondes multiples d’Everett.
Toutefois, le physicien Paolo Villoresi et ses collègues de l'université de Padoue ont cherché à savoir ce que donnerait l'expérience de Wheeler si elle était réalisée à l'aide d'un faisceau laser sur une grande distance. Comme les chercheurs l'expliquent dans un article publié dans Science Advances, ils se sont servis des instruments disponibles au Matera Laser Ranging Observatory(MLRO) italien pour réaliser un interféromètre de Mach-Zender géant en connectant l'observatoire et des satellites en orbite basse avec un faisceau laser. Malgré une distance de 3.500 km environ parcourue par les photons, l'expérience de choix retardé de Wheeler a donné les mêmes résultats que ses homologues terrestres de bien plus petite taille, ce qui renforce notre confiance dans la validité universelle des équations de la physique quantique.
Les commentaires de Jean-François Roch
Voici les commentaires que nous avait faits, il y a dix ans, Jean-François Roch en ce qui concerne les résultats de son équipe avec l'expérience de Wheeler, qui sont toujours appropriés.
« En mécanique quantique, le résultat qu'on observe dépend de manière cruciale de la mesure qu'on effectue. Par exemple, dans une expérience d'interférence, un photon apparaîtra soit comme une onde, soit comme un corpuscule, suivant qu'on choisit d'effectuer une expérience mettant en évidence soit un comportement ondulatoire, soit un comportement corpusculaire. Bien sûr, on peut se demander à quel instant exactement s'effectue ce "choix".
John Wheeler a proposé de le "retarder" le plus possible, en attendant que le photon soit déjà "à l'intérieur" de l'appareil de mesure pour décider ce qu'on va faire à la fin. Dans notre expérience, l'appareil de mesure est un interféromètre de 50 mètres de long, et nous attendons que le photon soit "au milieu" de ce dispositif pour choisir aléatoirement la mesure qu'on va finalement effectuer. Eh bien, même dans ces conditions extrêmes, le photon "ne se laisse pas surprendre" et il a bien le comportement prévu par la théorie quantique. Même si on laisse "planer le doute" le plus longtemps possible, le photon se manifeste bien comme une onde si on lui demande "es-tu une onde ?", et comme un corpuscule si on lui demande "es-tu un corpuscule ?".
À quoi cette expérience sert-elle ? Il existe une "tension" connue entre la théorie quantique et la relativité, car les effets quantiques ne permettent pas d'envoyer des messages plus vite que la lumière, mais sont juste "à la frontière" de cette possibilité. C'est ce qu'on appelle souvent la "non-localité quantique". Cette relation tendue entre les deux théories fondamentales de la physique demeure troublante, et continue à donner lieu à des tests expérimentaux comme celui que nous avons réalisé. Bien sûr, la mécanique quantique est une fois de plus confirmée, mais plusieurs travaux théoriques récents soulignent l'importance de ces effets pour la sécurité des protocoles de cryptographie quantique.
Par exemple, les théoriciens utilisent des objets abstraits appelés "boîtes non locales", qui respectent la relativité, mais sont encore plus "non locales" que la mécanique quantique. L'enjeu de ces études est de proposer des protocoles de cryptographie quantique dont la sécurité résulterait non seulement de la mécanique quantique, mais aussi de la relativité, via la relation étroite qui lie ces deux théories.
J'attire également votre attention sur l'interprétation de notre expérience au moyen de la théorie de l'onde pilote proposée par David Bohm. Vous pouvez lire un commentaire à ce propos écrit par Travis Norsen et accessible surquant-ph ».
Une vidéo sur le principe de l'expérience de Wheeler utilisant un interféromètre de Mach-Zender. Pour obtenir une traduction en français assez fidèle, cliquez sur le rectangle blanc en bas à droite. Les sous-titres en anglais devraient alors apparaître. Cliquez ensuite sur l'écrou à droite du rectangle, puis sur « Sous-titres » et enfin sur « Traduire automatiquement ». Choisissez « Français ». © Quantum Future